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Discrete velocity models~DVM’s ! are an important mod
ern tool for simulation of complex macroscopic phenome
such as hydrodynamics. The common idea of the DV
methods is that macroscopic equations are not addresse
rectly but via a fictitious microscopic dynamics of particl
with a small set of microscopic velocities. DVM are kinet
equations for populations of those particles, and the ma
scopic equations arise in a limit of the microscopic dyna
ics. DVM are in many cases more suitable for study~in the
first place, for numerical realizations! than the macroscopic
equations. There exists an impressive body of realization
this idea~lattice Boltzmann method, Broadwell models, d
crete velocity approximations of conservation laws, etc.!, as
well as applications to various macroscopic systems@1#.

One of the central issues of DVM methods is the co
struction of the local equilibrium populations. Indeed, sin
only a finite set of microscopic velocities is allowed, it
likely that certain important relations for moments of t
distribution function might be broken if no care is take
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This can be understood as follows: The usual Maxwell d
tribution function f M(c,r,u,T) is a five-parametric set la
beled with hydrodynamic fields. The form off M is such the
momentum flux,Pab5* f Mcacbd3c is just in the form re-
quired in the Euler equations,Pab5pdab1ruaub . If only a
finite set of microscopic velocitiesc is allowed, would this
relation survive under a straightforward extension off M?
The answer is no. To cope with this problem, one usua
starts with an ansatz for the equilibrium in a form of a po
nomial in terms of hydrodynamic fields, which contain
enough free parameters to be tuned in such a way as to m
an appropriate form of the ‘‘broken’’ moments. Though f
certain sets of velocities the appropriate equilibria were s
cessfully found along these lines@2#, the approach has cer
tain limitations. First, the answers are not always uniq
Moreover, it is rather difficult to check several features of t
resulting kinetics, in the first place, existence of anH theo-
rem. Finally, this approach seems not directly suitable for
extension to the DVM methods to space-time dependent
of microscopic velocities. A proof of theH theorem lacks
also in other strategies of constructing equilibrium popu
tions that avoid polynomial ansatz~see, for instance, Ref
@3#!.

In this Rapid Communication, we aim at developing
systematic method of constructing equilibria for discrete

ent
l-
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netic equations. Our approach is based on a suitable v
tional principle, and it is demonstrated that appropriate fo
of moments can be reconstructed in an unique way. Furt
more, this route makes it possible to prove theH theorem.
Finally, we give an outline of how this method can be us
to derive the Lattice Boltzmann method on irregular grids

Notations.We consider a set ofb microscopic velocities
ci , with componentscia , wherea51, . . . ,d. We assume
isotropy: ( i

bcia1

n1
¯ciak

nk 50, if n11¯1nk is odd, ( i
bciacib

5D21j2dab , and nondegeneracy:b( i 51
b ci

2ci
2Þ@( i 51

b ci
2#2.

Populations of fluid particlesNi are represented by vectorsN
in a b-dimensional real space. Notation (x,y)5( i 51

b xiyi will
stand for the scalar product in this space. We also us
special orthogonal basis in theb-dimensional space, which i
constructed as follows:~i! Hydrodynamic basis(H) is the
result of orthogonalization ofD12 b-dimensional vectors
~1, . . . ,1!, (c1a , . . . ,cba), and (c1

2 , . . . ,cb
2). Corresponding

unit orthogonal vectors areh0, ha, and hD11. Hydrody-
namic fields r5( i 51

b Ni , rua5( i 51
b ciaNi , and rp

5( i 51
b ci

2Ni are linear combinations of components (N,h0),
(N,ha), and (N,hD11). ~ii ! Primary flux basis(PF) con-
tains unit vectorsf 1

ab and f 1
a , which are constructed by or

thogonalization procedure from the vectorsv1
ab

5(c1ac1b , . . . ,cbacbb) and v1
a5(c1ac1

2 , . . . ,cbacb
2). Mo-

mentum flux,Pab5(v1
ab ,N), and heat flux,Qa5(v1

a ,N),
are linear combinations of projections of the vectorN onto
the H and PF basis.~iii ! Secondary flux basis(SF) contains
unit vectors f 2

abg and f 2
ab which are constructed from

vectors v2
abg5(c1ac1bc1g , . . . ,cbacbbcbg) and v2

ab

5(c1ac1bc1
2 , . . . ,cbacbbcb

2). ~iv! Residual basis, (R), r k, is
formed by the further orthogonalization of theb-dimensional
vectors with polynomial componentscia , . . . ,civ .

PopulationsNi are functions of the spacer and timet,
and satisfy the kinetic equation

] tNi1cia]aNi5D i . ~1!

This is the continuous space-time version of the discrete
locity models. In applications, a particularly important re
ization of the collision integralD i is the Bhatnagar-Gross
Kook ~BGK! form

D i52v@Ni2Ni
e~N!#, ~2!

wherev21 is a relaxation time andNi
e is the equilibrium.

The conservation laws gived12 necessary constraints o
the equilibrium, ($h0,ha,hD11%,N2Ne)50.

Auxiliary equilibrium. First we construct an auxiliary
equilibrium~AE! Ni

a . For this purpose, we consider a strict
convex functionH5(N,N), and minimize it subject to fixed
hydrodynamic quantities. The result reads

Ni
a5rH k2pj2

bk2j4 1
duacia

j2 1
pb2j2

bk2j4 ci
2J , ~3!

where k5( i 51
b ci

2ci
2 , and j was defined above asj2

5( i 51
b ci

2 . The functionS52H will play the role of the
entropy in the kinetic theory under consideration. If Navie
Stokes equations without heat transfer are addressed,
hydrodynamic variables are density and momentum, and
ia-

r-

d

a

e-

-
en

he

AE is found by minimization ofH, subject to the constraint
of fixed r andru with the result

Na5rb21~11j22Dbuacia!. ~4!

Auxiliary equilibria ~3! and ~4! are explicit and very
simple. It is not particularly important that AE do not resu
in hydrodynamic equations because their purpose is sole
fix the values of conserved quantities. In the next step
correction to AE~3! has to be constructed such that the im
proved equilibria should fix the higher moments in an app
priate form. These improved equilibria may be termed ‘‘ta
get’’ equilibria Nt. The method of constructingNt does not
depend on whether the heat conduction is included or
and we will consider here the case without heat transfer
the sake of clarity of presentation. In this case, the hydro
namic basis consists ofD11 vectorsh0 andha, the primary
flux basis consists of vectorsf 1

ab , and the secondary flux
basis consists of vectorsf 2

abg .
Target equilibrium.We seek the target equilibrium in th

heat nonconductive case in the following form:

Nt5Na1a1
ab f 1

ab1a2
abg f 2

abg , ~5!

whereNa is given by Eq.~4!, and where coefficientsa1
ab and

a2
abg are found from a condition that the projection

(Nt, f ab) and (Nt, f a) have the given form as functions o
hydrodynamic fields. This form is well known, and in ou
case result in the following system of linear algebraic eq
tions:

a1
ab~v1

mn , f 1
ab!5Mmn2~Na,v1

mn!,
~6!

a2
abg~v2

mnl , f 2
abg!5Mmnl2~Na,v2

mnl!.

Here Mmn5pdmn1rumun , and Mmnl5p(dmnul1dmlun

1dnlum)1umunul , and the pressurep is proportional tor.
Equation~6! defines unambiguously the coefficientsa1 and
a2 in the target equilibrium~5!. Equivalently, the target equi
librium ~5! provides minimum to the functionH, subject to
constraints of fixed hydrodynamic quantities, and fixed v
ues of the moments, (v1

mn ,N)5Mmn , (v2
mnl ,N)5Mmnl . It

can be demonstrated that the hydrodynamic limit of the BG
equations~1! and ~2! with the equilibrium~5! are Navier-
Stokes equations~see examples below!.

Examples.Consider the set of three one-dimensional v
locities,c252c, c050, andc15c. The orthonormal basis
consists of three vectors: Hydrodynamic basis,h05(1/
))(1,1,1) andh15(1/&)(21,0,1); primary flux basis,f 1

5(1/A6)(1,22,1). The auxiliary equilibrium solves th
variational problemH5(N,N)→min, subject to the con-
straints (N,h0)5(1/))r and (N,h1)5(1/&c)ru. The re-
sult readsNi

a5(r/3)@11(3uci)/(2c2)#. The target equilib-
rium Nt has the formNt5Na1a f1, where the parametera is
found from the analysis of the moment equations. The la
are

] tr1]x~ru!50,

] t~ru!1]xP50, ~7!

] tP1c2]x~ru!52v~P2Pt!.
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The Chapman-Enskog method, as applied to system~7!,
gives P5P(0)1v21P(1), P(0)5Pt, and P(1)52@] t

(0)P(0)

1c2]x(ru)#, where

] t
~0!P~0!52@]P~0!/]r#]x~ru!2@]P~0!/]~ru!#]xP

~0!,

where P5(v,N) and v5(c2
2 ,c0

2 ,c1
2 ). Requiring Pt5cs

2r
1ru2, wherecs

25(1/3)c2 is sound speed squared, the fir
two lines in Eq.~7! give

] tr1]x~ru!50,
~8!

r~] tu1u]xu!1cs
2]xr22v21cs

2]x@r~12M2!]xu#50,

where M25u2/cs
2 is Mach number squared. WhenM→0,

Eqs. ~8! recover one-dimensional Navier-Stokes equatio
Thus, the condition for the target equilibrium reads (v,Nt)
5(v,Na)1a(v, f 1)5cs

2r1ru2, and which coincides with
the first line in the Eq.~6!. This condition is a linear equatio
for parameter a which gives a5(v, f 1)21@rcs

21ru2

2(v,Na)#. It can be demonstrated with a direct computati
that the resulting target equilibrium coincides with the o
found in @2# for this model by a different method.

The set of three velocities does not permit to impose
the constraints~6!. If we add two further velocities, and con
sider five-velocity modelci5 ic, wherei 522,21,0,1,2, the
elements of our basis are as follows: Hydrodynamic ba
h05(1/A5)(1,1,1,1,1) andh15(1/A10)(22,21,0,1,2); pri-
mary flux basis,f 15(1/A14)(2,21,22,21,2); and second-
ary flux basis, f 25(1/A10)(21,2,0,22,1). The auxiliary
equilibrium is given by Eq.~4!, while the target equilibrium
is Nt5Na1a1f 11a2f 2 , where

a1~v1 , f 1!5p1ru22~v1 ,Na!,

a2~v2 , f 2!53pu1ru32~v2 ,Na!.

Herev15c2(4,1,0,1,4), andv25c3(28,21,0,1,8). The tar-
get equilibrium thus constructed results in true Navier-Sto
equations, and it does not coincide with the one propose
@2# ~this Nt is qubic inu while the equilibria of Ref.@2# are
quadratic!. If, however, we use only the primary flux bas
for construction ofNt, then we can obtain the result of@2#.

Lattice realization.If discrete velocities form links of a
regular lattice, then one considers the fully discrete coun
part of the kinetic equation~1!. For the BGK collision inte-
gral ~2!, this lattice BGK equation~LBGK! reads

Ni~r1ci ,t11!5~12v!Ni~r,t !1vNi
e~r,t !. ~9!

Herer is the discrete space variable~sites of the lattice! and
t is the discrete time. Since the equilibrium is local in spa
the above construction of the auxiliary and target equilib
applies for the fully discrete case without any changes. A
well known, the difference amounts to a renormalizati
v21→v21(22v) in the transport coefficients, and thusv is
confined to the linear stability interval@0,2#. We will see
below how this fact reflects the difference in theH theorem
for continuous and fully discrete cases.
t
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H theorem: Continuous space-time.Since the entropyS
52(N,N) is defined for positive as well as negative vecto
N, the available phase space isRb. The local entropy pro-
ductions in a stateN reads

s52v~]S/]N,N2Nt!52v~N,N2Nt!. ~10!

A generic population N may be decomposed asN
5(k(N,ek)ek, where ek are elements of the basi
HøPFøSFøR. Let us define a cylinderZ which consists
of suchN that (N, f )5(Nt(N), f ), wheref are elements of
the primary and the secondary flux basis. In other words
population belongs toZ if its projection onto the flux basis is
equal to that of the corresponding target equilibrium. IfN
PZ, then (Nt,N2Nt)50, and we come to the following
local H theorem:

s52v~N2Nt,N2Nt!>0. ~11!

The local H theorem~11! results straightforwardly in the
global H theorem for the continuous space-time equatio
~1! and~2!: Let S̄ be the total entropy of a volumeV. Under
suitable conditions at the boundary]V ~making zero the en-
tropy flux!, dS̄/dt5s̄, where the total entropy production i
the integral ofs ~11! over the volumeV. In the case of the
LBGK equation~9! the H theorem is different.

H theorem: Discrete space-time.The total entropy of the
lattice at time stept11 is

S̄~ t11!52(
r

(
i 51

b

Ni
2~r,t11!.

Summation inr goes over all lattice sites. Under suitab
boundary conditions~periodic, for instance!, we may write
Ni(r1ci ,t11) in place ofNi(r,t11), and, using Eq.~9! we
derive

S̄~ t11!2S̄~ t !5
22v

2
s~ t !̄, ~12!

where s̄5( rs(r,t) is the total entropy production at tim
stept. Thus, for the fully discrete case, theH theorem~12!
states the following: if at timet the state belongs to th
cylinderZ, and ifv belongs to the linear stability interval@0,
2#, the variation of the total entropy per next time step
non-negative, and equals a fraction of the total entropy p
duction.

Proofs of theH theorem in both cases cannot be extend
beyond the cylinderZ. This happens because in constructi
the target equilibrium we have used the elements of the
basis, which are a part of the kinetic~nonhydrodynamic!
space. Since we have imposed a constraint in this place~the
constraint of matching to the desired form of fluxes!, not all
kinetic space becomes available. On the other hand, if
auxiliary equilibrium is used instead of the target one, th
both of the proofs,~11! and ~12! become valid in the whole
Rb but then the proper form of fluxes is not available an
more.

LBGK method for irregular grids.Finally, we will discuss
briefly an extension of our approach to arbitrary sets of
locities. This question is particularly important for an exte
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sion of the LBGK method to irregular grids. Consider a la
tice that is structured in the sense that each site has a con
number of linksb. The outgoing links at the siter form a
local microscopic velocity set,ci(r). The state of the lattice
is updated in accord with the LBGK Eq.~9!, where now the
microscopic velocities are space dependent. Our goal i
construct the target equilibrium in such a way as to match
Navier-Stokes equations. The same method as above ca
applied. In particular, for the case without heat transfer,
auxiliary equilibrium which minimizes the functionH sub-
ject to fixed density and momentum is readily available.
simplify notations, we introduce the index-raising operati
xa5Tab

21xb , whereT21 is the inverse ofT5( i 51
b cici . Then

xaya5xaTab
21yb , and the solution to the minimization prob

lem reads

Ni
a5r

12ciaca1@bcib2cb1~ciacb2cacib!ca#ub

b2caca .

~13!

Herec5( i
bci is the self-speed of the site. Equation~13! re-

covers the auxiliary equilibrium~4! in the regular limit. An
account for constraints such as those in the Eq.~6! are the
same as above. In addition to the local constraints~6!, we
have to imposegradient constraints on the target equilib
rium, which are

(
i 51

b

Ni
t$]acia ,]bciacib ,]gciacibcig%50. ~14!

Here ]acia , etc. are variations of the microscopic veloci
set in space. An account for constraints~14! is necessary to
obtain the left-hand side of moment equations in the div
gency form, and these constraints can be incorporated
the construction of the target equilibrium on the same foot
as the moment constraints above. Results on this prob
will be reported separately@4#.

Discussion.The result of this Rapid Communication is
systematic method for constructing equilibria for discrete
locity models. Our approach can be summarized as follo
instead of using a polynomial ansatz, we take the simp
possible convexH function, and perform a systematic min
mization subject to a certain number of linear constrain
These constraints are sufficient to obtain such a moment
tem that has the proper macroscopic equations in the hy
dynamic limit. For the simplest convex functionH
5(N,N), this is equivalent to~i! constructing the auxiliary
equilibrium which fixes the hydrodynamic quantities, and~ii !
adding a linear combination of the flux basis, coefficients
this linear combination are found unambiguously from a s
tem of linear algebraic equations. The construction of
equilibrium via a minimum principle makes it possible
prove theH theorem.
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The choice of the strictly convex functionH for the con-
struction of equilibria is a degree of freedom in the DV
models, not yet fully exploited. It is not ruled out that fo
some functionsH, the minimization subject to hydrody
manic constraints will occasionally result in proper form
higher moments of interest. It is not difficult to write out a
equation for such a ‘‘perfect’’ function which is a functiona
equation for the gradient]H/]N. However, solutions to the
latter equation are not known, and therefore we have to d
with less perfectH functions. One criterium for their choice
is availability of explicit solutions to the minimal set of con
straints, leading to auxiliary equilibria. For this reason, w
have used the functionH5(N,N). There exist otherH func-
tions for which the auxiliary equilibria can be construct
explicitly. However, all exact auxiliary equilibria known t
us need to be further corrected, and so, for the computati
purpose, it seems appropriate to start with the simplest o
We reiterate that the price to be payed for reconstruction
the proper higher moments on the expense of a part of
kinetic space is the existence of theH theorem in a corre-
sponding cylinder, and not in the whole phase space. T
gives at least a partial explanation of the well known fact t
DVM models with a small number of velocities are gene
cally less stable than those with larger velocity sets: if m
of the kinetic space is used for imposing constraints, then
dimension of the cylinderZ is too small.

The method presented here can be applied to a large
ily of convex functionsH ~convexity is required, as usual, t
obtain unique solutions for the local equilibria!, and a ques-
tion arises as to whether there are physically motivated s
classes in this large family. Rather than the case of the c
tinuous Boltzmann equation where the entropy is unique,
situation is similar to the case of ergodic Markov chains t
support an infinite number of convex Lyapunov functio
@6#. It should be admitted that well-known motivations whic
honor the Boltzmann entropy~additivity, information-
theoretic ideas, etc.! do not seem to be directly relevant t
the problem under consideration. However, there are two
sues which may be relevant:~i! Positivity of local equilibria,
and ~ii ! Nonlinearity of the auxiliary equilibria. These re
quirements narrow down the class of functionsH, and if the
solvability requirement is taken into account, the only su
able function known so far isH5(N,AN), for regular lat-
tices @5#. This, however, brings with it a complication be
cause auxiliary equilibria become well defined for only
bounded domain of hydrodynamic parameters. The use
the functionH5(N,N) is free of this complication, and con
struction of the target equilibria as well as the proof of theH
theorem is therefore much easier.
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