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We develop a systematic method of constructing equilibria for kinetic models with discrete microscopic
velocities. The approach is based on a suitable entropy maximum principléd THeorem is demonstrated in
the continuous and discrete space-time realizations. In addition, we discuss an extension of the Lattice Boltz-
mann method to irregular gridgS1063-651X98)50410-2

PACS numbsgs): 05.20.Dd, 47.1%j, 51.10+y

Discrete velocity model§DVM's) are an important mod- This can be understood as follows: The usual Maxwell dis-
ern tool for simulation of complex macroscopic phenomendribution function fy(c,p,u,T) is a five-parametric set la-
such as hydrodynamics. The common idea of the DVMbeled with hydrodynamic f|e|d5-3The form &f; is such the
methods is that macroscopic equations are not addressed @omentum flux,P,z= [fyc,Cedc is just in the form re-
rectly but via a fictitious microscopic dynamics of particles quired in the Euler equationB,,s=pd,z+ puaUg. Ifonly a
with a small set of microscopic velocities. DVM are kinetic finité set of microscopic velocities is allowed, would this
equations for populations of those particles, and the macrd aton survive under a straightforward extension fgf?

: tions arise in a limit of the microscopic dynam- he answer is no. To cope W|th.th_|s prpblem, one usually
scopic equatio ; ) starts with an ansatz for the equilibrium in a form of a poly-
ics. DVM are in many cases more suitable for stiohythe

: d o . homial in terms of hydrodynamic fields, which contains
first place, for numerical realizationthan the macroscopic enough free parameters to be tuned in such a way as to match

equations. There exists an impressive body of realizations of,, appropriate form of the “broken” moments. Though for
this idea(lattice Boltzmann method, Broadwell models, dis- certain sets of velocities the appropriate equilibria were suc-
crete velocity approximations of conservation laws,)e@s  cessfully found along these lin¢g&], the approach has cer-
well as applications to various macroscopic systé¢is tain limitations. First, the answers are not always unique.
One of the central issues of DVM methods is the con-Moreover, it is rather difficult to check several features of the
struction of the local equilibrium populations. Indeed, sinceresulting kinetics, in the first place, existence oftartheo-
only a finite set of microscopic velocities is allowed, it is rem. Finally, this approach seems not directly suitable for an
likely that certain important relations for moments of the extension to the DVM methods to space-time dependent sets
distribution function might be broken if no care is taken. of microscopic velocities. A proof of thel theorem lacks
also in other strategies of constructing equilibrium popula-
tions that avoid polynomial ansatsee, for instance, Ref.
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netic equations. Our approach is based on a suitable vari&E is found by minimization oH, subject to the constraints

tional principle, and it is demonstrated that appropriate formof fixed p and pu with the result

of moments can be reconstructed in an unique way. Further-

more, this route makes it possible to prove thetheorem. N?=pb ™1 (1+£7?Dbu,ci,). 4

Finally, we give an outline of how this method can be used

to derive the Lattice Boltzmann method on irregular grids.
Notations.We consider a set df microscopic velocities

¢, with components;,, wherea=1,... d. We assume
ban1 ...

Auxiliary equilibria (3) and (4) are explicit and very
simple. It is not particularly important that AE do not result
in hydrodynamic equations because their purpose is solely to
. ) N , b fix the values of conserved quantities. In the next step, a
isotropy: 2ic;,, *Cj, =0, if nyt+---+nis 0dd, £iCiuCis  correction to AE(3) has to be constructed such that the im-
=D '¢25,5, and nondegeneracy=_,c’c?#[=P_,c?]2.  proved equilibria should fix the higher moments in an appro-
Populations of fluid particlell; are represented by vectdds  priate form. These improved equilibria may be termed “tar-
in ab-dimensional real space. Notatiox,§) =3>P_, x;y; will get” equilibria N'. The method of constructinly' does not
stand for the scalar product in this space. We also use @epend on whether the heat conduction is included or not,
special orthogonal basis in tihedimensional space, which is and we will consider here the case without heat transfer for
constructed as followsti) Hydrodynamic basigH) is the the sake of clarity of presentation. In this case, the hydrody-
result of orthogonalization ob +2 b-dimensional vectors hamic basis consists @+ 1 vectorsh® andh®, the primary

1,...,D, (Ciy: - .- Cpa), and (Ci: o ,cﬁ). Corresponding flux basis consists of vector§?, and the secondary flux
unit orthogonal vectors art?, h¢, and h®*. Hydrody-  basis consists of vectofg””.

namic fields p=3="_,N;, pu,=3P .c;,N;, and pm Target equilibriumWe seek the target equilibrium in the
=3P_,c?N; are linear combinations of components,h?), heat nonconductive case in the following form:

(N,h®), and (N,h®*1). (ii) Primary flux basis(PF) con-
tains unit vectors $# and f¢', which are constructed by or-
thogonalization  procedure from the vectora$”  \yhereN?is given by Eq/(4), and where coefficients? and
=(C1aC1p, - - - CbaCbp) ANA V= (C14CF, . .. CpaCh). Mo- ag?” are found from a condition that the projections
mentum flux,P,s=(v$*,N), and heat fluxQ,=(v{.N),  (N',f*#) and (N',f%) have the given form as functions of
are linear combinations of projections of the vedibonto  hydrodynamic fields. This form is well known, and in our

theH and PF basig(iii) Secondary flux basiSF) contains  case result in the following system of linear algebraic equa-
unit vectors f3#? and f5# which are constructed from tions:

N'=N2+af?fiP+aglrish7, (5

vectors  v5#7=(C14C14C1y, - - - CbaCbsChby) and vs”

=(C14C14C%, . . . ChaCppCl)- (iv) Residual basis(R), r¥, is aiP (" f17) =M, — (N*v{"),

formed by the further orthogonalization of thedimensional By uh gafy o (6)
vectors with polynomial components,, ... Ci,- a;" (02" 127) =M — (N% 05 ™).

PopulationsN; are functions of the spaceand timet,

and satisfy the kinetic equation Here M, =pd,,+pu,l,, and M,,,=p(d,,u+d,,U,

+ 5%%) tu,uuy, and the.pressurp is propo.rti.onal top.
N+ Ciad Ni=A, . (1)  Equation(6) defines unambiguously the coefficierats and
a, in the target equilibriung5). Equivalently, the target equi-
This is the continuous space-time version of the discrete vdibrium (5) provides minimum to the functiohl, subject to
locity models. In applications, a particularly important real- constraints of fixed hydrodynamic quantities, and fixed val-
ization of the collision integrald; is the Bhatnagar-Gross- ues of the momentsp{”,N)=M ,,, (u’z“",N)=MWx. It

Kook (BGK) form can be demonstrated that the hydrodynamic limit of the BGK
. equations(1) and (2) with the equilibrium(5) are Navier-
Ai=—o[N;=N;7(N)], (20 stokes equationtsee examples below
1 . . o o ExamplesConsider the set of three one-dimensional ve-
wherew™ " is a relaxation time and\; is the equilibrium. locities,c_ = —c¢, c,=0, andc, =c. The orthonormal basis

The conservation laws givé+2 necessary constraints on -gnsists of three vectors: Hydrodynamic basi®=(1/
oy - O o D 1 _ . )
the equilibrium, (h®,h*,h>"*},N—N®)=0. v3)(1,1,1) andh'=(1w2)(~1,0,1); primary flux basist"

A_gxil_iary equilibrium. F!rst we construct an auxilir?lry =(11/6)(1,-2,1). The auxiliary equilibrium solves the
equilibrium (AE) N2. For this purpose, we consider a strictly variational problemH = (N,N)— min, subject to the con-

convex functiorH = (N,N), and minimize it subject to fixed giaints N h°)=(1/\/§)p and (N hl):(llﬁc)pu‘ The re-

hydrodynamic quantities. The result reads sult readsN?= (p/3)[ 1+ (3uc;)/(2¢2)]. The target equilib-
k—me?  duc,. wb—g rium Nt has the formiN'=N2+af!, where the parameteris
N2=p T+ ”‘2 le 4 ciz , ®) found from the analysis of the moment equations. The latter
bk—¢ & bk—¢ are
where k=3P_,c?c?, and ¢ was defined above ag? gp+,(pu)=0,
=3P_,c?. The functionS=—H will play the role of the
entropy in the kinetic theory under consideration. If Navier- d(pu)+a,P=0, (7)

Stokes equations without heat transfer are addressed, then
hydrodynamic variables are density and momentum, and the 3P+ c?d(pu)=—w(P—PY).
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The Chapman-Enskog method, as applied to systém H theorem: Continuous space-tim8ince the entropys
gives P=PO)+ ¢ 1pM) pO=pt and PM=—[4OPO - _(N,N) is defined for positive as well as negative vectors
+c?9,(pu)], where N, the available phase spaceR§. The local entropy pro-

ductiono in a stateN reads
AOPO = —[9PO/p]a,(pu)—[aPO1a(pu)]a,P?,
t : plaxipt)—L (P19 o= —w(dSIN,N=NY=20(N,N—NI).  (10)
where P=(v,N) and v=(c?,c2,c2). Requiring P'=c2p

5 5 a . A generic populationN may be decomposed a8l
+ pu®, wherecs=(1/3)c is sound speed squared, the first

=3,(N,eeX, where e are elements of the basis

two lines in Eq.(7) give HUPFUSFUR. Let us define a cylindeZ which consists
of suchN that (N,f )=(N'(N),f ), wheref are elements of
dip+ dx(pu)=0, the primary and the secondary flux basis. In other words, a
(8) population belongs t& if its projection onto the flux basis is
p(atu+u&xu)+c§&xp—2w‘1c§ax[p(1— M?)d,u]=0, equal to that of the corresponding target equilibriumNIf

eZ, then N',N—N")=0, and we come to the following
where M2=u?/c2 is Mach number squared. Whevi—0,  localH theorem:
Egs. (8) recover one-dimensional Navier-Stokes equations. B ¢ ¢
Thus, the condition for the target equilibrium readsN?) o=20(N=-NN-N)=0. (12)

_ 1\ _ 2 2 . . . .
=(v,N%)+a(v,f)=csp+pu”, and which coincides With pe |ocalH theorem(11) results straightforwardly in the
;he first line in the Eq(hG_).hTh|s_ condltl_on 'Sf? I_lr;earzequatzlon global H theorem for the continuous space-time equations
fr( ?\lzr)?mﬁtsgnabev;égqong:gz davat(rfél d?rec[tp sgr: p LlIJtation(l) and(2): Let S be the total entropy of a volumé. Under

v ) P suitable conditions at the bounda#y (making zero the en-

that the resulting target equilibrium coincides with the one — — .
found in[2] for this model by a different method. tropy flux), dSdt= o, where the total entropy production is

The set of three velocities does not permit to impose alfh® integral ofo (11) over the volumeV. In the case of the
the constraint6). If we add two further velocities, and con- LBGK equation(9) the H theorem is different.

sider five-velocity modet; = ic, wherei = —2,—1,0,1,2, the H theor_em: Discrete_ space-tim&he total entropy of the
elements of our basis are as follows: Hydrodynamic basidattice at time step+1 is

h®=(1/y5)(1,1,1,1,1) anth*= (1/{/10)(- 2,—1,0,1,2); pri- b

mary flux basisf,=(1/y14)(2,~1,—2,—1,2); and second- St+1)=—> 3 N3(rt+1).

ary flux basis, f,=(1/y/10)(—1,2,0~2,1). The auxiliary roi=1

equilibrium is given by Eq(4), while the target equilibrium

is N'=N2+a, f,+a,f,, where Summation inr goes over all lattice sites. Under suitable

boundary conditiongperiodic, for instance we may write
N;(r+¢,t+1) in place ofN;(r,t+ 1), and, using Eq.9) we

al(Ulafl):p+PU2_(UlyNa), derive

az(vz,fz):3pu+pu3_(U2,Na). — — 2—w—
S(t+l)—5(t)=TO'(t), (12
Herev,=c?%(4,1,0,1,4), and,=c3(—8,—1,0,1,8). The tar-
get equilibrium thus constructed results in true NaVier'StC’ke%vheregzEro(r,t) is the total entropy production at time
equations, and it does not coincide with the one proposed iQtept. Thus, for the fully discrete case, th theorem(12)
[2] (thiS,Nt is qubic inu while the equilibria of Ref[2] are  giates the following: if at time the state belongs to the
quadratig. If,_howevter, we use only the primary flux basis ¢yjinderz, and if » belongs to the linear stability intervgd,
for cor!strucno_n oﬂ\l , the_n we can obFa_un the res_ult ot]. 2], the variation of the total entropy per next time step is
Lattice realization.If discrete velocities form links of a non-negative, and equals a fraction of the total entropy pro-
regular lattice, then one considers the fully discrete counterg,ction.
part of the kinetic equatiof). For the BGK collision inte- Proofs of theH theorem in both cases cannot be extended
gral (2), this lattice BGK equatioriLBGK) reads beyond the cylindeE. This happens because in constructing
the target equilibrium we have used the elements of the flux
Ni(r+¢,t+1)=(1—w)Ni(r,t) + oN7(r,1). (9 basis, which are a part of the kinetiaonhydrodynamic
space. Since we have imposed a constraint in this plaee
Herer is the discrete space varialiigites of the latticeand  constraint of matching to the desired form of fluxesot all
t is the discrete time. Since the equilibrium is local in spacekinetic space becomes available. On the other hand, if the
the above construction of the auxiliary and target equilibriaauxiliary equilibrium is used instead of the target one, then
applies for the fully discrete case without any changes. As i®oth of the proofs(11) and(12) become valid in the whole
well known, the difference amounts to a renormalizationR® but then the proper form of fluxes is not available any-
o 1= w 12— w) in the transport coefficients, and thwss ~ more.
confined to the linear stability intervdD,2]. We will see LBGK method for irregular gridsFinally, we will discuss
below how this fact reflects the difference in tHetheorem  briefly an extension of our approach to arbitrary sets of ve-
for continuous and fully discrete cases. locities. This question is particularly important for an exten-
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sion of the LBGK method to irregular grids. Consider a lat- The choice of the strictly convex functidi for the con-

tice that is structured in the sense that each site has a constatuction of equilibria is a degree of freedom in the DVM
number of linksb. The outgoing links at the siteform a  models, not yet fully exploited. It is not ruled out that for
local microscopic velocity set;(r). The state of the lattice some functionsH, the minimization subject to hydrody-

is updated in accord with the LBGK E€P), where now the  manic constraints will occasionally result in proper form of
microscopic velocities are space dependent. Our goal is tRigher moments of interest. It is not difficult to write out an
construct the target equilibrium in such a way as to match th@quation for such a “perfect” function which is a functional
Navier-Stokes equations. The same method as above can Qﬁuation for the gradientH/JN. However, solutions to the
applied. In particular, for the case without heat transfer, thg,q, equation are not known, and therefore we have to deal

aU):'I,['ar]}{ egu(ljllbrlgtm Wr('j'Ch mlnlr?lzes_ the ]:;J_PC“OH_ISEF' T with less perfecH functions. One criterium for their choice
ject to fixed density and momentum 1S readily avarable. 10;q availability of explicit solutions to the minimal set of con-

simplify notations, we introduce the index-raising Operatlonstraints, leading to auxiliary equilibria. For this reason, we

a_T-1 -1 ; _sb
X _aT“BX'BL lvvhereT s the inverse o =2;_;GG . Then .o 1sed the functiod =(N,N). There exist otheH func-
X2¥*=X4T o5Yg, and the solution to the minimization prob- tions for which the auxiliary equilibria can be constructed
lem reads explicitly. However, all exact auxiliary equilibria known to
1—CioC+[bCis— Ca+ (CiuCp— CoCip)CYIUP us need to be further correpted, and so, f_or the cqmputational
. purpose, it seems appropriate to start with the simplest one.
(13) We reiterate that the price to be payed for reconstruction of
the proper higher moments on the expense of a part of the
Here c=2ibci is the self-speed of the site. EquatitiB) re-  kinetic space is the existence of thktheorem in a corre-
covers the auxiliary equilibriunt4) in the regular limit. An  sponding cylinder, and not in the whole phase space. This
account for constraints such as those in the @®y.are the gives at least a partial explanation of the well known fact that
same as above. In addition to the local constraifiswe  DVM models with a small number of velocities are generi-
have to imposegradient constraints on the target equilib- cally less stable than those with larger velocity sets: if most

Na

=P

b—c,c®

rium, which are of the kinetic space is used for imposing constraints, then the
b dimension of the cylindeZ is too small.
2 Nit{ﬂacia \95C14Ci 5 0,CiaCigCipt = O, (14) _ The method prgsented here clan'be applled to a large fam-
i=1 ily of convex functionsH (convexity is required, as usual, to

o ) ] _obtain unigue solutions for the local equilibriand a ques-

Here d,ci,, etc. are variations of the microscopic velocity tion arises as to whether there are physically motivated sub-
set in space. An account for constraiftg) is necessary to ¢lasses in this large family. Rather than the case of the con-
obtain the left-hand side of moment equations in the divertinyous Boltzmann equation where the entropy is unique, the
gency form, and these constraints can be incorporated intgityation is similar to the case of ergodic Markov chains that
as the moment constraints above. Results on this probleg]. |t should be admitted that well-known motivations which
will be reported separatefyt]. _ ~_ honor the Boltzmann entropy(additivity, information-

Discussion.The result of this Rapid Communication is @ theoretic ideas, etcdo not seem to be directly relevant to
systematic method for constructing equilibria for discrete vethe problem under consideration. However, there are two is-
locity models. Our approach can be summarized as followssyes which may be relevartt) Positivity of local equilibria,
instead of using a polynomial ansatz, we take the simplesing (i) Nonlinearity of the auxiliary equilibria. These re-
possible convexd function, and perform a systematic mini- guirements narrow down the class of functidhsand if the
mization subject to a certain number of linear constraintssoyability requirement is taken into account, the only suit-
These constraints are sufficient to obtain such a moment sygyje function known so far is{:(N,\/N), for regular lat-
tem that has the proper macroscopic equations in the hydrqices 5], This, however, brings with it a complication be-
dynamic limit. For the simplest convex functiom  c5use auxiliary equilibria become well defined for only a
=(N,N), this is equivalent tdi) constructing the auxiliary poynded domain of hydrodynamic parameters. The use of
equilibrium which fixes the hydrodynamic quantities, &l he functionH = (N, N) is free of this complication, and con-

adding a linear combination of the flux basis, coefficients Ofgiction of the target equilibria as well as the proof of khe
this linear combination are found unambiguously from a sySiheorem is therefore much easier.

tem of linear algebraic equations. The construction of the
equilibrium via a minimum principle makes it possible to  1.V.K. acknowledges the support of the CNR, the SD
prove theH theorem. RAS, and the RFBRGrant No. 95-02-03836ja
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